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Abstract Vimentin is an intermediate filament (also known as
nanofilament) protein expressed in several cell types of the central
nervous system, including astrocytes and neural stem/progenitor
cells. Mutation of the vimentin serine sites that are phosphorylated
during mitosis (VL AS54) leads to cytokinetic failures in fibro-
blasts and lens epithelial cells, resulting in chromosomal instabil-
ity and increased expression of cell senescence markers. In this
study, we investigated morphology, proliferative capacity, and
motility of VI A/SA astrocytes, and their effect on the differenti-
ation of neural stem/progenitor cells. VIMSYSA astrocytes
expressed less vimentin and more GFAP but showed a well-
developed intermediate filament network, exhibited normal cell
morphology, proliferation, and motility in an in vitro wound clos-
ing assay. Interestingly, we found a two- to fourfold increased
neuronal differentiation of VM54 neurosphere cells, both in a
standard 2D and in Bioactive3D cell culture systems, and deter-
mined that this effect was neurosphere cell autonomous and not
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dependent on cocultured astrocytes. Using BrdU in vivo labeling
to assess neural stem/progenitor cell proliferation and differenti-
ation in the hippocampus of adult mice, one of the two major adult
neurogenic regions, we found a modest increase (by 8%) in the
fraction of newly born and surviving neurons. Thus, mutation of
the serine sites phosphorylated in vimentin during mitosis alters
intermediate filament protein expression but has no effect on as-
trocyte morphology or proliferation, and leads to increased neu-
ronal differentiation of neural progenitor cells.

Keywords Intermediate filaments - Nanofilaments -
Vimentin - GFAP - Astrocytes - Neural stem/progenitor cells -
Bioactive3D culture system

Introduction

The intermediate filament system (known also as nanofilament
system) of astrocytes is a dynamic integrator of cellular functions
under physiological conditions and plays an important role in
times of cellular stress as well as in the subsequent regenerative
processes [1-6]. Whereas the upregulation of intermediate fila-
ment proteins in astrocytes is important for the confinement of the
lesion area in brain injury, ischemic stroke, retinal ischemia, or
spinal cord injury, it inhibits some of the regenerative processes
later on [4, 5]. We and others previously demonstrated that mice
carrying null mutations in genes encoding glial fibrillary acidic
protein (GFAP) and vimentin (GEAP™ Vim "~ mice) have astro-
cytes devoid of astrocyte intermediate filaments [7, 8] and exhibit
better posttraumatic regeneration of neuronal synapses and axons
[9, 10], improved functional recovery after spinal cord injury [11],
reduced photoreceptor degeneration in the retinal detachment
model [12], and reduced pathological neovascularization in
oxygen-induced retinopathy [13]. We also demonstrated that in
GFAP " Vim™ mice, retinal grafts can better integrate [14],
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differentiation of transplanted neural stem cells into neurons and
astrocytes is enhanced [15], and hippocampal neurogenesis is
increased in naive mice [16], after neonatal hypoxic-ischemic
injury [17], or after neurotrauma [16]. The astrocyte intermediate
filament system is important for the ability of astrocytes to cope
with conditions associated with cellular stress, such as that in-
duced by ischemia reperfusion [18-20]. We have shown that the
astrocyte intermediate filament system regulates Notch signaling
from astrocytes to neural stem/progenitor cells, a mechanism that
inhibits differentiation of neural progenitors into neurons, astro-
cytes, or oligodendrocytes in the adult brain [16, 21]. Thus, in a
variety of injury models, the benefits of reactive gliosis in the acute
stage of central nervous system injury is balanced against restrict-
ed regenerative potential at the later stage, and hence modulation
of reactive gliosis targeting the intermediate filament system
might lead to enhanced recovery after central nervous system
injury.

The highly dynamic assembly and disassembly of intermedi-
ate filaments is essential for the function of the intermediate fila-
ment system [22-24]. Intermediate filament phosphorylation is a
key regulator of intermediate filament dynamics and is crucial for
the organization of the intermediate filament network and the
subcellular distribution of intermediate filament proteins [25,
26]. The intermediate filament disassembly, regulated by phos-
phorylation of serine/threonine residues in the amino-terminal
head domain of intermediate filament proteins [24, 27], was re-
ported to be essential for the efficient separation of the two daugh-
ter cells during mitosis [28-32]. In various cell types, including
astrocytes, some of the key vimentin phosphorylation sites and
their respective protein kinases have been identified [28-30,
33-41]. Phosphovimentin-deficient mice (V1 ASA mice), i.e.,
mice expressing vimentin in which all the serine sites that are
phosphorylated during mitosis were substituted by alanine resi-
dues, show cytokinetic failures in fibroblasts and lens epithelial
cells resulting in aneuploidy, chromosomal instability, and in-
creased expression of cell senescence markers [42]. VIMS5A
mice exhibit a phenotype of pre-mature aging, including cataract
development in lens, delayed skin wound healing, and subcuta-
neous fat loss in old age [42, 43]. Here, we investigated whether
the vimentin phosphorylation deficit in VIM**5* mice alters as-
trocyte morphology, proliferative capacity, and motility, and
whether the phosphovimentin-deficient astrocyte niche affects
neuronal differentiation of neural progenitor cells in vitro and
neurogenesis in vivo.

Experimental Procedures

Animals

In VimS4/54 mice, the serine residues in the vimentin head
domain identified as phosphorylation sites during mitosis
(Ser-6, Ser-24, Ser-38, Ser-46, Ser-55, Ser-64, Ser-65, Ser-

71, Ser-72, Ser-82, and Ser-86) were replaced by alanine
[42]. The Vim™* mutation was on C57Bl/6 genetic back-
ground, the colony was maintained as heterozygotes, and the
experimental groups were genotyped by PCR. All mice were
housed in standard cages in a barrier animal facility and had
free access to food and water. All the experiments were con-
ducted according to protocols approved by the Ethics
Committee of the University of Gothenburg (Dnr. 247-2014).

Astrocyte Cultures

Postnatal day 0.5-2.5 mouse cortical tissue was dissected in
cold Dulbecco’s phosphate-buffered saline (DPBS) (Thermo
Fisher Scientific), cut into small pieces, incubated in 0.05%
trypsin-ethylenediaminetetraacetic acid (EDTA) solution
(Thermo Fisher Scientific) at 37 °C for 10 min, and mechan-
ically dissociated into a single cell suspension. Single cell
suspension isolated from each mouse brain were seeded in a
poly-D-lysine-coated (10 pg/mL; Sigma-Aldrich) T75 culture
flask (Sarstedt) in Dulbecco’s minimal essential medium
(DMEM) (Thermo Fisher Scientific) supplemented with 1%
Pen/Strep (Thermo Fisher Scientific), 1% L-glutamine
(Thermo Fisher Scientific), and 10% heat-inactivated fetal calf
serum (FCS; HyClone/Thermo Fisher Scientific). The con-
tamination of non-astrocyte cells in these cultures was
minimalized as previously described [19, 44]. For astrocyte
proliferation assay, 10,500 cells/cm? were seeded in poly-D-
lysine-coated 6-well culture plates. For scratch wound live
imaging recording, 12,500 cells/cm? were seeded in poly-D-
lysine-coated 12-well culture plates. For intermediate filament
bundle imaging and cell size/polynucleation assessment, pri-
mary astrocytes were detached (trypsinized) by incubating
with 0.25% trypsin-EDTA solution (Thermo Fisher
Scientific) at 37 °C for 10 min and reseeded on poly-D-ly-
sine-coated coverslips placed in 24-well culture plates
(TPP), at a density of 30,000 cells/cm?.

Astrocyte Proliferation Assay and Scratch Wound
Healing Assay

For astrocyte proliferation assay, primary astrocytes cultured
in 6-well culture plates were collected on 4, 8, 12, 16, 20, and
24 days in vitro (DIV), trypsinized, and resuspended in astro-
cyte medium for cell counting. The cell number per milliliter
medium was determined by a Countess automated cell counter
(Thermo Fisher Scientific). For astrocyte wound healing as-
say, an approximate 800 um wide wound was made by
scratching with a 1-mL pipette tip on 14-day-old primary as-
trocytes cultured in a 12-well culture plate. The plate was then
placed on a Leica DMI 6000B microscope connected to an
incubator chamber supplied with humid atmosphere of 37 °C
and 5% CO,. Images were taken every 12 h automatically for
a total of 132 h.
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Neurosphere Cultures

Postnatal day 2.5-3.5 mouse forebrain was dissected in cold
DPBS (Thermo Fisher Scientific), cut into small pieces, incu-
bated in TrypLE solution (Thermo Fisher Scientific) at 37 °C
for 10 min, and mechanically dissociated into a single cell
suspension. The dissociated cells were plated in neurosphere
medium composed of Neurobasal medium (Thermo Fisher
Scientific), supplemented with 1% Pen/Strep (Thermo Fisher
Scientific), 1% L-glutamine (Thermo Fisher Scientific), 2%
B27 (Thermo Fisher Scientific), 20 ng/mL bFGF (Thermo
Fisher Scientific), 20 ng/mL. EGF (Thermo Fisher Scientific),
and 1 U/mL Heparin (Sigma-Aldrich). Dissociated brain cells
were plated at a density of 8000 cells/cm?” in T25 cell suspen-
sion culture flasks (Sarstedt; for neurosphere expansion) or
12,500 cells/em? in 12-well suspension culture plates (Greiner
Bio One; for neurosphere quantification) to form neurospheres.
Neurospheres were passaged on 7 DIV by dissociation of
neurosphere cells with TrypLE solution (Thermo Fisher
Scientific) into a single cell suspension, which was then
replated. To quantify secondary and quaternary neurospheres,
primary and tertiary neurospheres, respectively, were dissociat-
ed and plated at a density of 5000 cells/cm” in 48-well cell
suspension culture plates (Greiner Bio One).

Neurosphere Differentiation

On 7 DIV, primary neurospheres were collected, dissociated
by TrypLE, and allowed to differentiate in differentiation me-
dium on poly-L-ornithine- (0.01 mg/mL; Sigma-Aldrich) and
laminin-coated (5 pg/mL; Thermo Fisher Scientific) 24-well
culture plates (TPP) or on poly-L-ornithine- and laminin-
coated Bioactive3D nanofiber scaffolds (3Dtro) placed in
24-well culture plates. The differentiation medium was com-
posed of Neurobasal medium (Thermo Fisher Scientific) sup-
plemented with 1% Pen/Strep (Thermo Fisher Scientific), 1%
L-glutamine (Thermo Fisher Scientific), 2% B27 (Thermo
Fisher Scientific), and 1% heat-inactivated fetal calf serum
(HyClone/Thermo Fisher Scientific). Differentiated cells were
cultured for 5 days before examination. For immunocyto-
chemical analysis, neurospheres were allowed to adhere on a
poly-D-lysine-coated 24-well culture plate, and cultured for
24 h before examination.

Astrocyte—Neurosphere Cocultures

At confluency (6-7 DIV), primary astrocytes were trypsinized
and plated in poly-L-ornithine- and laminin-coated 24-well cul-
ture plates or Bioactive3D nanofiber scaffolds placed in 24-
well culture plates. Twenty-four hours later, the culture medium
was changed to neurosphere differentiation medium. When
confluent (2-3 days), dissociated primary neurosphere cells
were plated on astrocytes. To label the neurosphere cells,
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0.5 uM 5-bromo-2'-deoxyuridine (BrdU) was added into the
neurosphere culture 48 h before dissociation. The neurosphere
cells were allowed to differentiate in the coculture for 5 days
before examination.

Immunocytochemistry

Cells were washed in DPBS and fixed in 4% paraformalde-
hyde (PFA; Sigma-Aldrich), followed by blocking unspecific
binding sites using blocking buffer. The blocking buffer
consisted of DPBS supplemented with 2% donkey serum
(Jackson Immunoresearch), 2% goat serum (Jackson
Immunoresearch), and 0.1% Triton-X 100 (Sigma-Aldrich).
The cells were then incubated with primary antibodies at
4 °C overnight. For detection of BrdU, cells were first treated
with 2 M HCI at 37 °C for 10 min. Proteins of interest were
detected using the following primary antibodies: rabbit anti-
nestin (1:1500; Covance), rabbit anti-GFAP (1:1500; Dako),
chicken anti-vimentin (1:1500; Biolegend), mouse anti-311I-
tubulin (1:1500; Covance), mouse anti-MAP2 (1:1500;
Sigma-Aldrich), and rat anti-BrdU (1:200; Serotec).
Fluorophore-conjugated secondary antibodies were used at a
dilution of 1:2000 and incubated with the cells for 1.5 h at
room temperature (RT). Secondary antibodies used were as
follows (all from Thermo Fisher Scientific): Alexa 594-
conjugated goat anti-mouse, Alexa 488-conjugated donkey
anti-mouse, Alexa 555-conjugated donkey anti-rabbit, Alexa
488-conjugated donkey anti-rabbit, Alexa 488-conjugated
donkey anti-rat, Alexa 647-conjugated goat anti-chicken,
and Alexa 647-conjugated goat anti-rat. Cell nuclei were vi-
sualized by DAPI (Sigma-Aldrich). Fluorescence-labeled cell
cultures were imaged and analyzed using either a Leica DMI
6000B microscope (Leica) or a LSM 700 confocal micro-
scope (Zeiss). Only BII-tubulin®® cells negative for GFAP
were regarded as neurons and only GFAPP®® cells negative for
[BII-tubulin were regarded as astrocytes. The images were
analyzed by ImagelJ software.

For astrocyte cell size and polynucleation assessment, the
CellTracker dye (Thermo Fisher Scientific) was diluted 50%
with PBS and incubated with cells for 20 min at RT. Nuclei of
these cells were counterstained with TO-PRO-3 dye (Thermo
Fisher Scientific). The coverslips were scanned with ScanR
highcontent microscope (Olympus) and analyzed using
ScanR Analysis software. The software was used for deter-
mining the cell size and counting total number of cells,
polynucleated cells were counted manually.

Protein Extraction and Western Blot Analysis

Protein extraction protocols were previously described [45].
In brief, total protein from astrocytes or differentiated
neurosphere cells was harvested by adding protein lysis buffer
to the cell culture plates for 2D or by submerging the
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nanofiber scaffolds in an Eppendorf tube containing lysis
buffer for Bioactive3D cell cultures. Neurospheres were col-
lected in a 15-mL tube and centrifuged at 300xg for 5 min, the
culture medium was removed, and neurospheres washed with
DPBS and resuspended in a protein lysis buffer. The protein
lysis buffer was composed of 20 mM Tris-HCL (pH 7.5),
150 mM NaCl, 1 mM EDTA, 1% v/v Triton-X 100, one tablet
of protease inhibitor (Roche)/10 mL lysis buffer, and one tab-
let of phosphatase inhibitor (Roche)/10 mL lysis buffer. The
protein lysates were sonicated for 30 s at 14 amplitude mi-
crons followed by protein concentration measurement by
using Bio-Rad DC protein assay (Bio-Rad).

Sodium dodecyl sulfate polyacrylamide gel electrophoresis
(SDS-PAGE) was performed using Any-kD polyacrylamide
gels (Bio-Rad) and Tris-glycine running buffer (Bio-Rad). A
total amount of 15 pg of protein lysate per lane was loaded.
Separated proteins were blotted on PVDF membranes (0.2 pm;
Millipore/Immobilon) for 2 h at 100 V, 300 mA. Transfer buffer
was composed of Tris-base (2.9 g/L), glycine (14.4 g/L), and
MeOH (10% v/v) in dH,O. Unspecific binding was blocked
overnight at 4 °C using 3% bovine serum albumin (BSA,;
Sigma-Aldrich) in Tris-buffered saline containing 0.1%
Tween. Incubation with primary antibodies was conducted at
4 °C overnight followed by incubation with secondary HRP-
linked anti-mouse (1:2000; Cell Signaling), anti-rabbit (1:2000;
Cell Signaling), or anti-goat (1:2000; Thermo Fisher Scientific)
antibodies for 45 min at RT. Secondary HRP-linked antibodies
were detected using ECL Western blotting detection reagents
(GE Healthcare) and a LAS-3000 luminescent image analyzer
(Fyjifilm). The following primary antibodies were used: rabbit
anti-GFAP (1:250; Dako) rabbit anti-vimentin (1:2000;
Abacm), mouse anti-nestin (1:1500; BD Biosciences), rabbit
anti-GLT-1 (1:250; Novus Biological), mouse anti-1II-
tubulin (1:1500; Covance), goat anti-SOX2 (1:200; Santa
Cruz), HRP-linked anti-GAPDH (1:500; Cell Signaling), and
HRP-linked anti-beta-actin (1:1500; Cell Signaling). The inten-
sity of bands was quantified using ImageJ software and nor-
malized to GAPDH protein levels.

BrdU Injections

For basal cell proliferation, 3-month-old male mice received a
single intraperitoneal injection of BrdU (300 mg/kg) in sterile
saline and were killed 24 h later. For cell fate determination, 3-
month-old male mice received BrdU (300 mg/kg) injection
twice daily for 1 week and were killed 6 weeks after the first
injection.

Tissue Processing and Immunohistochemistry
Mice were anesthetized and perfused by 4% PFA transcardially,

and the dissected brains were postfixed with 4% PFA overnight.
After immersion in 30% sucrose in PBS, 30-um-thick coronal

Fig. 1 VIM*** astrocytes exhibit well-developed intermediate filament P>
network, normal proliferation, and scratch wound response despite lower
vimentin levels. a VIM®4 and VIM" 7" astrocytes showed comparable
GFAP, nestin, and vimentin intermediate filament bundles, as assessed by
immunolabeling (single and double) using antibodies against GFAP,
nestin, and vimentin. b Western blot analysis showed that VIMSYSA ag-
trocytes had unaltered expression of nestin and GLT-1 but lower expres-
sion of vimentin and higher expression of GFAP compared with VA"
wr astrocytes (n = 8 per genotype). ¢ VI ASA and VIMY YT astrocytes
showed comparable cell size and contained comparable percentage of
polynucleated cells (7 = 4 per genotype). d VIMS* and viM™W ™™
astrocytes showed comparable proliferation and saturation cell density
(n = 4 per genotype). e VIMSV4 and VIMW 77 astrocytes had also com-
parable cell motility in vitro, as assessed by measuring the scratch wound
size every 12 h (n =3 per genotype). Data are presented as a mean = SEM.
*p < 0.05, ***p < 0.001. Scale bar in (a) and (¢), 20 um

sections were cut on a cryostat microtome. For BrdU immuno-
histochemistry, sections were treated first with 2 M HCl at 37 °C
for 15 min, and then blocked in 2% BSA (Sigma-Aldrich) in
DPBS supplemented with 1% Triton-X 100 (Sigma-Aldrich) at
4 °C overnight. The sections were then incubated with primary
antibodies at 4 °C overnight. The following antibodies were
used: rat anti-BrdU (1:200; Serotec), goat anti-doublecortin
(1:50; Santa Cruz), and mouse anti-NeuN (1:200; Millipore).
Fluorophore-conjugated secondary antibodies were used at a
dilution of 1:1000 and incubated with the sections for 1.5 h at
RT. Secondary antibodies used were (all from Thermo Fisher
Scientific) Alexa 594-conjugated donkey anti-rat, Alexa 488-
conjugated donkey anti-goat, Alexa 488-conjugated donkey
anti-rat, and Alexa 594-conjugated donkey anti-mouse. Cell
nuclei were visualized by DAPI (Sigma-Aldrich).

Hippocampal Cell Quantification

For absolute BrdU cell quantification and colocalization of
BrdU with doublecortin (DCX) or NeuN, every 6th coronal
section covering the dentate gyrus within the hippocampal
formation (total ten sections covering a depth of 1800 pm)
were used for immunohistochemical analysis. The sections
were imaged by a LSM 700 confocal microscope (Zeiss)
using a tiled scan function with Z-stack optical dissections
covering 25 pum thickness, to capture the whole dentate gyrus
area in each section. The images were analyzed by Zen 2.1
software (Zeiss). On each section, all cells positive for BrdU
within the region of interest were manually quantified and
assessed for NeuN or DCX immunoreactivity.

Data Analysis

Statistical analyses were performed using either Excel
(Microsoft) or GraphPad Prism (Graphpad software). Two-
tailed ¢ test was used for comparison between two groups.
Two-way ANOVA followed by post hoc analysis (Sidak cor-
rection) was conducted for multiple comparison with repeated
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measurements. Difference were considered significant at
p <0.05. All values were presented as mean £ SEM.

Results

VIMSAS* Astrocytes Exhibit Well-Developed
Intermediate Filament Network, Normal Proliferation,
and Scratch Wound Response Despite Lower Vimentin
Levels

Astrocytes lacking vimentin exhibit intermediate filaments
forming tightly packed bundles that are composed of only
GFAP [8], altered cell morphology, and reduced motility
[46]. Thus, we first examined the intermediate filament sys-
tem and morphology of primary astrocytes isolated from the
cortex of 2-day-old VIM"W™"T and VIMSA/5* mice.
Immunolabeling of GFAP, nestin, and vimentin showed bun-
dles of intermediate filaments that did not differ between
VIMYTYT and VIMSYS? astrocytes (Fig. 1a). Combined
immunolabeling of VIM"""" and VIMS5* astrocytes with
antibodies against GFAP and vimentin, or nestin and
vimentin, visualized comparable networks of intermediate fil-
ament bundles with a comparable contribution of the respec-
tive intermediate filament proteins (Fig. 1a). Western blot
analysis showed lower levels of vimentin and higher levels
of GFAP in VIM>SA astrocytes, while the levels of nestin and
glutamate transporter GLT-1 were unaltered (Fig. 1b). VIMSY
SA and VIM"""T astrocytes were of a comparable cell size
(Fig. 1c). As VIMSYSA fibroblasts exhibit problems with cell
division [43], we next determined the fraction of astrocytes
with more than one nucleus. Polynucleation was rarely ob-
served in cultures of VIMY7WT and VIMSASA astrocytes, and
there was no difference in the percentage of polynucleated
cells in VIMY™WT and VIMS*5 astrocyte cultures
(1.4 £ 0.1% versus 1.3 + 0.2%, respectively; Fig. 1¢). There
was no difference in the proliferation and saturation cell den-
sity of VIM"7"T and VIMS** primary astrocytes, albeit the
VIM*A astrocytes exhibited a trend towards increased pro-
liferation and higher saturation cell density (Fig. 1d).

Next, we used the scratch wound assay to assess astrocyte
motility. Recordings of wound closure dynamics by live cell
imaging every 12 h for 132 h did not show any difference in
the wound closure between VIM" """ and VIM*** astro-
cytes. These results demonstrate normal motility of VIAS5
astrocytes (Fig. le).

VIMS*54 Neurosphere Cells Show Increased Neuronal
Differentiation

Combined absence of GFAP and vimentin resulting in the ab-
sence of astrocyte cytoplasmic intermediate filament system was
previously linked to increased neuronal differentiation of

neurosphere cells [16] and increased hippocampal neurogenesis
both in health and disease [16, 17, 47]. To determine the effects
of the absence of mitotic phosphorylation sites in vimentin on
neurosphere formation and differentiation, we assessed prolifer-
ation and differentiation of VIM*** and VIM"""T neurosphere
cells. A comparable number of primary, secondary, and quater-
nary neurospheres formed from the brain tissue of VIM**5* and
VIMPYTWT mice, and the cells of dissociated VIMSASA and
VIMY""T neurospheres exhibited comparable proliferation
(Fig. 2a). As demonstrated by immunolabeling with antibodies
against nestin and vimentin, VIM**** and vIM" W
neurosphere cells exhibited similar nestin and vimentin immu-
noreactivity (Fig. 2b). However, Western blot analysis showed
lower levels of vimentin in VIM** neurosphere cells com-
pared with VIM"""T and comparable levels of neural stem cell
markers nestin and SOX2 (Fig. 2b).

Next, we assessed the differentiation of VIMSSA and VIM™Y"
wr neurosphere cells, both in a standard two-dimentional (2D)
cell culture system and in the 3D cell culture system
(Bioactive3D) that we previously developed for astrocytes and
neurons [45, 48-50]. When allowed to differentiate in a 2D cell
culture system, the dissociated neurosphere cells derived from
VIMS™A mice were >4 times more likely to differentiate into
BII-tubulin®*GFAP" neurons than neurosphere cells derived
from VIM"""T mice (22.1 £ 4.8% versus 4.1 + 2.1%, respec-
tively; Fig. 2c). The VIM*** and VIM""" neurosphere cells
exhibited comparable astrocyte differentiation (Fig. 2¢). The in-
creased neuronal differentiation of VIM™** neurosphere cells
was confirmed by immunostaining with antibodies against
MAP2, a marker of more mature neurons compared with those
visualized by antibodies against 31II-tubulin. We observed more
than 100% increase in the fraction of MAP2 positive cells in
VIMSYSA compared with VIM"™"T neurosphere cell cultures
(Fig. 2d). VIM*** neurosphere cells differentiating in the
Bioactive3D cell culture system generated less astrocytes than
in the 2D system (Fig. 2c, e). Similar to the 2D culture system, in
Bioactive3D, neurosphere cells derived from VIM*** mice
were >3 times more likely to differentiate into (III-
tubulin®*GFAP"*® neurons than neurosphere cells derived from
VIMY"YT mice (30.4 £ 6.9% versus 10.0 £ 4.4%, respectively;
Fig. 2e), while VIM*5* and VIM™""" neurosphere cells exhib-
ited comparable astrocyte differentiation (Fig. 2e). The increased
neuronal differentiation potential of VIM*** neurosphere cells
in both culture systems was further supported by the B1II-tubulin
levels on Western blot in pooled protein lysates from cultures of
differentiating VIMS*S* neurosphere cells compared with
VIMYYT (Fig, 2f).

The Pro-neurogenic Properties of VIM*** Neurosphere
Cells Are Not Affected by the Astrocyte Environment

We previously reported that reduced Notch signaling from in-
termediate filament-free astrocytes increased neuronal
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Fig. 2 VIM5*5* neurosphere cells show increased neuronal
differentiation. a VIM®*S4 and VIM"™ ™" brain cells showed
comparable neurosphere forming capacity (assessed for primary,
secondary, and quaternary neurospheres) and VIMS"4 and vIiM" """
neurosphere cells showed comparable proliferation. The data show the
total number of neurospheres formed from 50,000 plated cells (n = 4 per
genotype) and the number of neurosphere cells generated from primary
dissociated neurospheres (n = 4 per genotype). b VIMS** and VI
neurosphere cells showed comparable vimentin and nestin
immunoreactivity. Western blot analysis showed comparable expression
of nestin and SOX-2 but lower expression of vimentin in VM54
neurosphere cells compared with VIMY™"T (n = 4 per genotype). c—e
To assess the neuronal differentiation, dissociated neurosphere cells were
allowed to differentiate, and double-immunolabeled with neuronal

differentiation of neural progenitor cells [16, 21]. Therefore, we
next sought to determine whether the increase in neuronal
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makers BIlI-tubulin or MAP2, and astrocyte marker GFAP. VIMS54

neurosphere cells showed highly increased relative (/eff) and absolute
(right) neuronal differentiation compared with VIM"""" neurosphere
cells in both 2D and Bioactive3D culture system (n = 5 per genotype in
2D system, n = 4 per genotype in Bioactive3D system; c, e, respectively).
VIMS4 neurosphere cells showed also twofold increase of neuronal
differentiation in 2D culture system when the neurons were
immunolabeled with antibody against MAP2 (d). f Western blot indicates
higher expression level of BIII-tubulin in differentiated VIMSYSA
neurosphere cells than in differentiated VIM" ™7 neurosphere cells, in
both 2D and 3D culture systems (n = 1 per genotype, pooled lysates from
four samples). Data are presented as a mean + SEM. *p < 0.05;
**p < 0.01. Scale bar in (a) and (d), 50 um. Scale bar in (b), 20 pm

differentiation of VIM>S* neurosphere cells was neurosphere

cell intrinsic or caused by the niche of VIM*5* astrocytes. We
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Fig. 3 The pro-neurogenic properties of VIM>* neurosphere cells are

not affected by the astrocyte environment. a, b Dissociated VIM"7"7 or

VIMSYS neurosphere cells pre-labeled with BrdU cocultured with
VIMY YT or VIMSASA astrocytes in 2D (a) and Bioactive3D (b) culture
systems. The graphs show the absolute number of immunolabeled neu-
rons (BII-tubulin®®*/GFAP"*¢/BrdUP®*) and astrocytes (GFAPP°*/BIII-
tubulin™*®/BrdUP®*) per square millimeter (n = 5 per genotype in 2D
cultures, n = 4 per genotype in Bioactive3D cultures; a, b, respectively).
Data are presented as a mean + SEM. *p < 0.05. NS, neurosphere cells; A,
astrocytes

assessed neurogenesis and astrogenesis from VIM*** and
VIMY YT neurosphere cells in cocultures of primary
neurospheres, pre-labeled with BrdU for 48 h, and passage 1
astrocytes. In the 2D cell culture system, VIM** neurosphere
cells gave rise to more neurons than VIM"""" neurosphere
cells when cocultured with VIM** astrocytes (10.4 + 2.1
cells/mm?” versus 3.1 £ 1.3 cells/mm?, respectively; Fig. 3a).
Similarly, in the Bioactive3D cell culture system, VIMSASA
neurosphere cells gave rise to more neurons than VIM"7W"
neurosphere cells, irrespective of whether they were cocultured
with VIMYYT (7.4 + 1.5 cells/mm? versus 2.0 + 1.0 cells/
mm?, respectively) or VIM*3* astrocytes (9.0 + 2.5 cells/
mm? versus 1.7 + 0.7 cells/mm?, respectively; Fig. 3b). The
astrocyte environment did not affect astrogenesis from
neurosphere cells in any of the coculture systems (Fig. 3a, b).
These results suggest that the increased neuronal differentiation
of VIM**5* neurosphere cells is a cell intrinsic phenomenon.

VIM*** Mice Exhibit a Modest Increase in the Fraction
of Newly Born and Surviving Neurons
in the Hippocampal Dentate Gyrus

To ascertain whether the increased neuronal differentiation of
VIMSA neurosphere cells in vitro translates into increased
neurogenesis in the brains of VIMSASA mice, we used BrdU

in vivo labeling and quantified neural stem cell proliferation
and neurogenesis in the hippocampal dentate gyrus, one of the
two major neurogenic regions of the adult brain. Twenty-four
hours after a single injection of BrdU, VIM*S* mice had
higher percentage of DCXP*°BrdUP®® neuroblasts in the dentate
gyrus of the hippocampus (41.9 £+ 0.9% versus 37.6 + 1.2% of
the BrdUP® cells, respectively); however, the absolute numbers
of BrdUP® cells and DCXP**BrdUP*® neuroblasts was compa-
rable in VIMYYT and VIMSS* mice (Fig. 4a).

Six weeks following BrdU labeling, the percentage of the
newly born and surviving NeuNP*BrdUP* neurons in VIMS
A mice was increased by 8% (66.3 + 1.0% versus 71.7 + 1.1%
of the BrdUP® cells; Fig. 4b). VI 454 mice had lower absolute
number BrdUP*® cells (488 =+ 16 versus 586 + 33, respectively),
and the absolute numbers of newly born and surviving
NeuNP*BrdUP®® neurons were comparable between the two
groups (390 + 26 versus 351 + 14, respectively; Fig. 4b).

Discussion

Our results show that mutation of the serine sites that are
phosphorylated during mitosis in the intermediate filament
protein vimentin results in lower levels of vimentin and higher
levels of GFAP in VIM>5* astrocytes but does not affect the
appearance and distribution of the intermediate filament net-
work, astrocyte morphology, proliferation, presence of multi-
ple cell nuclei, and astrocyte motility. Thus, phosphorylation
of vimentin during mitosis does not seem to play a major role
in the control of morphology, cell division, and motility of
astrocytes. This is in contrast with VIM*** lens epithelial
cells or fibroblasts that showed disrupted intermediate fila-
ment network and formation of unbreakable intermediate fil-
ament bridges during mitosis. Lower levels of vimentin in
VIMSYSA astrocytes apparently do not affect the appearance
and function of the intermediate filament network in these
cells. Vimentin network is highly dynamic with an active sub-
unit exchange between polymers and soluble subunits [51],
and it is conceivable that deficit in vimentin phosphorylation
affects the equilibrium between the polymerized and
unpolymerized intermediate filament proteins and conse-
quently leads to increased degradation of soluble vimentin
subunits. Functionally deficient intermediate filament net-
work in VIM**S* lens epithelial cells and fibroblasts was
linked to the increased incidence of polynucleation observed
in these cells [42, 43]. The presence of an intact intermediate
filament network in VIM**5* astrocytes is compatible with
the normal incidence of polynucleation in these cells.
Vimentin is highly expressed in astrocytes, lens epithelial cells
and fibroblasts. In astrocytes, vimentin forms intermediate
filaments together with GFAP and nestin. Given that GFAP
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Fig. 4 VIM" mice exhibit a modest increase in the fraction of newly
born and surviving neurons in the hippocampal dentate gyrus. a Image of
dentate gyrus immunostained with antibodies against doublecortin (DCX)
and BrdU; the nuclei were visualized with DAPI. Arrow, DCXP*BrdUP®®
cell; arrowhead, DCX"€BrdUP®® cell. VIMS*S4 mice had higher
percentage of DCXP**BrdUP neuroblasts among the proliferation cells
(BrdUP®) in the dentate gyrus, but the absolute numbers of BrdUP* cells
and DCXP**BrdUP* neuroblasts were comparable in VIM""”"7 and
VIMSYSA mice. Ten serial coronal brain sections with a 180-pm inter-
section distance analyzed per mouse, n = 5 per genotype. b Image of
dentate gyrus immunostained with antibodies against NeuN and BrdU.

is highly expressed in postnatal astrocytes but not in lens ep-
ithelial cells or fibroblasts [42, 43, 52], and that GFAP expres-
sion levels were increased in VIM>5* astrocytes, it is possible
that in VIM* astrocytes, GFAP compensates for the poten-
tial dysfunction of vimentin. Compensation by GFAP is con-
ceivably also the explanation for the normal appearance of the
intermediate filament network in VIS4 astrocytes, in con-
trast with the prominent changes of the intermediate filament
system in VIM>5* epithelial cells.

We previously reported that the absence of GFAP and
vimentin (but not of only GFAP or of only vimentin) led to
decreased Notch signaling from astrocytes to neural progeni-

tor cells [16, 21] and increased neuronal differentiation of
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The nuclei were visualized with DAPL. Arrow, NeuNP**BrdUP* cell;
arrowhead, NeuN"€BrdUP™ cell. VIMS*S* mice showed higher percent-
age of neurons (NeuNP**BrdUP®*) among surviving newly born cells
(BrdUP®®), but the absolute number of surviving newly born neurons

was comparable between the genotypes. VIM>S* mice showed de-

creased absolute number of surviving newly born cells (BrdUP*). Ten
serial coronal brain sections with a 180 pm inter-section distance ana-
lyzed per mouse, n = 10 per genotype. Data are presented as a
mean + SEM. *p < 0.05; **p < 0.01. The inlets in (a) and (b) show
individual fluorescence channels. Scale bar in (a) and (b), 20 um

these cells [16] as well as increased hippocampal neurogenesis
in mice devoid of astrocyte intermediate filaments, both in
health and disease [16, 17, 47]. Here, we observed increased
neuronal differentiation of VIM**** neurosphere cells and
determined that the pro-neurogenic properties of VIM>54
neurosphere cells were not due to astrocyte environment but
were neurosphere cell intrinsic.

In both 2D and Bioactive3D cell culture systems, VIMSASA
neurosphere cells showed highly increased neuronal differenti-
ation (two- to fourfold), but the fraction of newly formed and
surviving neurons in the hippocampal dentate gyrus of the
VIMS¥S* mice was only modestly increased (by 8%). Thus,
the in vitro effect of VIM*** mutation can be mitigated or
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masked in vivo by niche-related factors that remain to be iden-
tified. It is interesting to point out that the Bioactive3D culture
system, which maintains aspects of in vivo-like morphology of
the cultured neural cells (astrocytes and neurons) and reduces
the baseline reactivity of astrocytes as well as their proliferation
[45, 48-50], led to lower numbers of astrocytes in the
neurosphere cell differentiation assays, as well as in cocultures
of astrocytes/neurosphere cells. Nevertheless, even in
Bioactive3D, a cell culture system closer to the in vivo situa-
tion, the increased neurogenesis from neurosphere cells was
very robust and more prominent compared with only modestly
increased hippocampal neurogenesis in VIM**** mice, con-
ceivably due to the absence of other niche constituents such
as endothelial cells and microglia in the in vitro system.

In conclusion, our main finding is that VIM>** astrocytes
do not show any major phenotypic changes, but VIAS54
neurospheres exhibit highly increased neuronal differentia-
tion; this effect is neurosphere cell intrinsic and not dependent
on the astrocyte niche. VIM*** mice show a modest increase
in the fraction of newly born and surviving neurons in the
hippocampal dentate gyrus. The functional significance of this
finding and the involvement of phosphovimentin in the func-
tions of other cells that express vimentin in the neurogenic
niche, such as the endothelial cells and microglia, warrant
further investigation.
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